
Lucy Zhu, Panos Achlioptas, Kaichun Mo, Srinath Sridhar, Leonidas J. Guibas

Counting Semantic Part Types of 3D Objects



Motivation

• Learn to distinguish the individual parts of 3D object point-clouds

• 3D models often have distinct parts separable in 3D modeling 
programs

• Same cannot be said for objects in the real world such as models 
obtained via 3D scanners
• Manually model each piece

• Applications to computer vision and 3D Q&A



?

swivel chair

1 back seat

2 back connectors

1 seat

5 legs

5 wheels



• Ambiguity in structure of parts

• Addressing relatively rare parts

• Class imbalance

• Overfitting

Challenges



1. Prepare supervised dataset

2. Deploy 2 distinct Deep Neural Networks
i. Specializing in single part type

ii. Generalizing across multiple parts

3. Train on different parts of 3D object point-clouds 

Approach Overview



• 3D Object Point Clouds (ShapeNet) with labeled parts (PartNet)

• 2048 unique chair point clouds (split equally between testing and 
training dataset)
• Chairs selected for how distinct their parts are compared to other objects

• Avoid relatively small individual parts (windows in planes)

• Avoid homogeneous appearance like mugs (number of parts must vary)

Dataset



Jitter and rotation applied.

• Randomly select 
2,500/10,000 points for 
input

• Data augmentation
• Invariance

• Increase dataset size

Before data augmentation.

Point Cloud Model



• Avoid:
• Rare parts (< 5% occurrences)

• Parts occurring in ALL objects

• Structurally similar/synonymous 
parts
• Ex. Redundant to analyze both

back_seat and back_seat_surface

Selection of Parts to Analyze



PartNet Label Hierarchy

Result: { ‘leg’ : 4}



n x 3 PointNet k1

output scores

point cloud processing

k1

log softmax

x

max

(x = number of 
occurrences of part)

Specialized (specific part)



n x 3

PointNet

k1

k2

k3

kx

…

output scores (varying 
values for k)

5
1

2

2
5

6

linear layers

point cloud processing

vector of parts counts

(ground truth)

log softmax

n1 

n2 

n3

…

nx

max

(nx = part x occurs n times)

k1

k2

k3
…

kx

General (multiple parts)



• Trained and tested on multiple parts with varying resulting accuracies

• Specialized vs. General Deep Neural Networks

Experiment Results



• Address class imbalance
• 11 classes are reduced to 6 classes (0 to 5 legs) for the purpose of experiment

• Skewed towards 4 legs (and somewhat towards 0 legs)

Experiment Results (Specialized – Legs)



• # of Epochs: 50

• Learning Rate: 0.001
• Annealing (learning rate * 0.9 for every 16 iterations)

• Batch Size: 32 (32 batches in each epoch)

• Final Accuracy: 0.859375

Experiment Results (Specialized – Legs)



• # of Epochs: 50

• Learning Rate: 0.001

• batchSize: 32 (32 
batches in each epoch)

• Final Accuracy: 
0.8310546875

Experiment Results (General)



Experiment Results (Failure Cases)

• Legs small in comparison to overall shape
• (pred: 0 target: 4)



Experiment Results (Failure Cases)

• Legs are indistinct
• (pred: 0 target: 4)



Experiment Results (Failure Cases)

• Complex leg model 
• (pred: 5 target: 4)



Varying changes in accuracies (some improved and some worsened despite having a similar model structure)

Part Name Specialized General

back_frame_vertical_bars 0.7763671875 0.8173828125

back_frame_horizontal_bars 0.718750 0.7734375

bar_stretcher 0.880859375 0.8115234375

chair_arm 0.95703125 0.8994140625

foot 0.8603515625 0.8984375

leg 0.859375 0.7900390625

Comparison of Models



Establishing correlations 

between different part 

structures potentially 

enhances the 

generalization capacity 

for rarer parts as 

evident in the general 

network.

Part Name Specialized General

back_frame_vertical_bars 0.7763671875 0.8173828125

back_frame_horizontal_bars 0.718750 0.7734375

bar_stretcher 0.880859375 0.8115234375

chair_arm 0.95703125 0.8994140625

foot 0.8603515625 0.8984375

leg 0.859375 0.7900390625



• An approach that demonstrates the feasibility of solving the counting 
problem given proper part labels

• Specialized deep neural network not optimal when training dataset is 
sparse
• Parts in objects vary in appearance

• Possible paths to develop further:
• Point-cloud attention

• Unsupervised methods that reduce the amount of training data needed

Conclusion



Any Questions?


